

White paper

AutomationML and ECLASS
integration

Document Identifier: WP ECLASSAML, V 2.0.0

State: November 2021

 AutomationML and
 ECLASS integration

2

Common Working Group of AutomationML e.V and ECLASS e.V.

Contributer:

Olaf Graeser PHOENIX CONTACT GmbH & Co. KG

Lorenz Hundt inpro Innovationsgesellschaft für fortgeschrittene Produktions-
systeme in der Fahrzeugindustrie mbH

Michael John Siemens AG

Alexander Krahner WAGO Kontakttechnik GmbH & Co. KG

Gerald Lobermeier PHOENIX CONTACT GmbH & Co. KG

Arndt Lüder Otto-von-Guericke-Universität Magdeburg

Stefan Mülhens AmpereSoft GmbH

Josef Schmelter PHOENIX CONTACT GmbH & Co. KG

Version 2.0.0 November 2021

Contact: www.automationml.org

 www.eclass.eu

Regarding the use of the ECLASS standard please refer to www.eclass.eu

 AutomationML and
 ECLASS integration

3

Table of Contents

Table of Contents ... 3

List of Figures ... 5

List of Tables .. 7

1 Introduction and Scope .. 8

2 Terms, definitions and abbreviations ... 10

2.1 Terms and definitions ... 10

2.1.1 AutomationML ... 10

2.1.2 Automation object.. 10

2.1.3 AutomationML object .. 10

2.1.4 AutomationML class .. 10

2.1.5 AutomationML attribute ... 10

2.1.6 AutomationML document .. 10

2.1.7 AutomationML file.. 10

2.1.8 AutomationML interface .. 10

2.1.9 ECLASS Classification Class .. 10

2.1.10 ECLASS Property.. 10

2.1.11 ECLASS Value List ... 11

2.1.12 ECLASS Value .. 11

2.1.13 ECLASS Unit ... 11

2.1.14 ECLASS Keyword ... 11

2.1.15 ECLASS Synonym .. 11

2.1.16 ECLASS Application Class ... 11

2.1.17 ECLASS Aspect .. 11

2.1.18 ECLASS Block .. 11

2.2 AutomationML library ... 11

2.2.1 Instance ... 11

2.2.2 Instance hierarchy ... 11

2.2.3 Link .. 11

2.3 Abbreviations ... 11

2.4 Normative References ... 13

3 AutomationML .. 14

3.1 Basics ... 14

3.2 Capabilities for semantic integration .. 16

4 ECLASS ... 17

4.1 ECLASS Repersentation and Exchange ... 17

4.2 Modelling Features of ECLASS Advanced Representation .. 18

4.2.1 Block .. 18

4.2.2 Aspect ... 19

4.2.3 Cardinality ... 19

4.2.4 Polymorphism .. 19

5 Use Cases and Considered Data Exchange Structures .. 21

5.1 Technical Use Cases ... 21

5.1.1 Use case – simple semantic identification .. 21

5.1.2 Use case – semantic identification of properties ... 22

5.1.3 Use case – semantic identification of structures ... 22

5.2 Exchange use cases .. 23

 AutomationML and
 ECLASS integration

4

5.2.1 Assumptions for considered use cases .. 24

5.2.2 Use case - exchange of semantically unique instance data 25

5.2.3 Use case – encode data semantics .. 26

5.2.4 Use case – decode data semantics .. 28

5.2.5 Use case – ECLASS dictionary exchange .. 29

5.2.6 Use case – receive ECLASS dictionary .. 30

5.2.7 Use case – deliver ECLASS dictionary ... 31

5.3 Application use cases .. 32

5.3.1 Use case - development and use of semantically unique component libraries 32

5.3.2 Use case - lossless exchange between system configurator and CAx tool 33

5.3.3 Use case - construction validation .. 35

5.4 Boundary Conditions for Application .. 37

6 Realization of technical use cases ... 39

6.1 Integration of object semantics .. 39

6.1.1 Generation of eClassClassSpecification ... 39

6.1.2 Role class library generation process ... 40

6.1.3 Role class library application process ... 43

6.1.4 ECLASS Example ... 44

6.2 Integration of attribute semantics ... 46

6.2.1 Attribute semantics via IRDI .. 46

6.2.2 Attribute transformation best practice ... 48

6.2.3 ECLASS Example ... 50

6.3 Product description based on ECLASS in AutomationML ... 51

6.3.1 Attributes of System Unit Classes as Internal Elements ... 51

6.3.2 Cardinality ... 52

6.3.3 Polymorphism .. 53

6.3.4 Level Type ... 54

6.3.5 Properties with multiple values .. 55

6.3.6 ECLASS Example ... 56

Literature .. 60

 AutomationML and
 ECLASS integration

5

List of Figures

Figure 1 – General engineering data exchange process between engineering tools 8

Figure 2 – AutomationML base structure .. 14

Figure 3 – AutomationML topology description architecture .. 15

Figure 4 – Means for data semantic modelling in AutomationML ... 16

Figure 5 – ECLASS classification data structure .. 18

Figure 6 – Example Block ... 18

Figure 7 – Example for Cardinality.. 19

Figure 8 – Example for polymorphism in ECLASS ... 20

Figure 9 – General engineering activities embedded within production system engineering
(subset) .. 23

Figure 10 – System of relevant use cases for semantically unique exchange of data points 24

Figure 11 – Activity structure of use case "exchange of semantically unique instance data" 26

Figure 12 – Activity structure of use case "Encode data semantics" .. 27

Figure 13 – Activity structure of use case "decode data semantics" .. 28

Figure 14 – Activity structure of use case "ECLASS dictionary exchange" 29

Figure 15 – Activity structure of use case "receive ECLASS dictionary" .. 30

Figure 16 – Activity structure of use case "deliver ECLASS dictionary" ... 31

Figure 17 – System of relevant use cases for semantically unique exchange of data points 32

Figure 18 – Activity structure of use case "development and use of semantically unique
component libraries" .. 33

Figure 19 – Structure of use case „lossless exchange between system configuration tool and
CAx tool“ .. 34

Figure 20 – Activity structure of use case „lossless exchange between system configuration
tool and CAx tool“ .. 35

Figure 21 – Structure of use case “validation of construction” ... 36

Figure 22 – Activity structure of use case "validation of construction” ... 37

Figure 23 – XML description of the role class eClassClassSpecification 40

Figure 24 – Example Role Class .. 42

Figure 25 – Attributes within an Example Role Class ... 42

Figure 26 – Example Role Class XML View ... 43

Figure 27 – Applicable means for semantic reference for AutomationML Object 44

Figure 28 – Example motor AutomationML object with semantic reference for an instance and
an Internal Element with a role requirement .. 44

Figure 29 – Attributes to the example motor AutomationML object with semantic reference for
a) an instance and b) an Internal Element with a role requirement 45

Figure 30 – XML View of the example motor AutomationML object with semantic reference
(AC) .. 45

Figure 31 – Applicable means for semantic reference for a single attribute 47

Figure 32 – IRDI-Path example of a nested property ... 47

Figure 33 – IRDI-Path example of a nested property in cardinality .. 48

Figure 34 – Example RefSemantic for a single attribute .. 50

Figure 35 – Attribute tree of a SystemUnit Class with IRDI-PATH ... 51

Figure 36 – The attribute connection is a sub attribute of CAx connector and function 52

Figure 37 – The attribute “Connection” as IE of the SUC "PT 2,5 Quattro" 52

Figure 38 – Example System Unit Class with multiple attribute (cardinality) 53

Figure 39 – Polymorphic ECLASS property (Type of connection) ... 53

Figure 40 – System Unit Class with resolved polymorphism (Type of connection) 54

Figure 41 – ECLASS Property with Level Type .. 54

 AutomationML and
 ECLASS integration

6

Figure 42 – Level Type Attribute ... 55

Figure 43 – Attribute with multiple values ... 56

Figure 44 – Example of system unit class library including the attributes for the SUCs 57

Figure 45 – XML representation of example of system unit class library 58

Figure 46 – Example of instance hierarchy .. 58

Figure 47 – XML representation of the example instance hierarchy .. 59

 AutomationML and
 ECLASS integration

7

List of Tables

Table 1 – Abbreviations .. 11

Table 2 – Overview Use Cases .. 21

Table 3 – Definition eClassClassSpecification ... 40

Table 4 – Translation of the attributes of ECLASS to AML .. 48

Table 5 – Translation of the data types from ECLASS to AutomationML permitted data types 49

AutomationML and
 ECLASS integration

8

1 Introduction and Scope

Engineering processes of technical systems and their embedded automation systems have to
be executed with increasing efficiency and quality. Especially the project duration has to be
shortened while the complexity of the engineered system increases. To solve this problem the
engineering process is more and more executed by exploiting software based engineering tools
exchanging engineering information and artefacts along the engineering process related tool
chain.

While the efficiency of the different engineering tools has been considered for a long time and
important advancements have been made, the exchange of engineering data is still an important
issue. Within this process engineering information developed within one engineering tool has
to be transmitted to another engineering tool without any loss of information and without any
misinterpretation.

Usually the engineering information of a sending engineering tool is stored in this tool using the
tool internal data model as a tool internal project structure. To transmit this information to
another tool the project data have to be transformed to data within a data exchange format and
stored as an exported data file. This data file has to be read by the information receiving
engineering tool. The incoming data within the data exchange format have to be transformed to
project data following the internal data model o f the receiving tool. Thus, a virtual mapping of
the tool internal data models of the sending and the receiving tool is required as represented in
Figure 1.

Figure 1 – General engineering data exchange process between engineering tools

The critical point in the described process is the correct interpretation of receive d data within
the information receiving tool. For each incoming data point two main properties have to be
given:

1. The incoming data have to be readable, i.e. they must be provided in a syntax, which
can be automatically read by the receiving tool.

2. The incoming data have to be correctly mappable to the tool internal data model, i.e.
the semantics of each incoming data point need to be identifiable automatically by the
receiving tool.

To ensure both properties the data exchange format specification can fo llow two approaches.

Within the first approach syntax and semantic are defined in combination for each data point
expressable in the data exchange format, i.e. for each data point a dedicated expression is
integrated in the data exchange format only useable for this data point. Such approaches are
applied for example in STEP. They have the strong of not being easily extendable or adaptable
to different application cases.

Sending tool

Project

data

Tool internal

data model

-attribut

-attribut

Objekt

-attribut

-attribut

Objekt
1

-attribut

-attribut

Objekt

1

-attribut

-attribut

Objekt

1

Relation

Receiving tool

Project

data

Tool internal

data model

-attribut

-attribut

Objekt

-attribut

-attribut

Objekt
1

-attribut

-attribut

Objekt

1

-attribut

-attribut

Objekt

1

Relation

Exported
data

Mapping

Data in data

exchange
format

Data in data

exchange
format

Transform data

Write data Read data

Transform data

AutomationML and
 ECLASS integration

9

Thus, the second approach avoids the fixed specification of data object semantic. It d efines the
syntax of data objects and enables the integration of a semantic specification, i.e. each object
will carry its own semantics definition. This approach is applied in AutomationML for example.

Nevertheless, the semantic definition carried within the data object has to be unique. Therefore,
appropriate means have to be available.

Within the industry, several catalogue standards are available to classify objects with
associated properties with unambitious semantics. Usually they follow the IEC 61360 standard.
One example is the ECLASS catalogue standard. ECLASS has a four layer object classification
hierarchy with associated object properties enabling the unique identification of object types
like automation device types and its property types like vendor names. Another catalogue
standard is IEC CDD with a unlimited classification hierarchy provided by IEC
(https://cdd.iec.ch).

Such catalogue standard will be valuable for the definition of object semantics within a data
exchange format. This whitepaper will take up this idea. It will define a methodology how
ECLASS and similar catalogues could be applied to define unambitious semantics within
AutomationML.

AutomationML and
 ECLASS integration

10

2 Terms, definitions and abbreviations

2.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62714-1 and the
following apply.

2.1.1 AutomationML

XML based data exchange format for plant engineering data

2.1.2 Automation object

Entity in the automated system

Note: An example of an automation object is an automation component, a valve or a signal.

2.1.3 AutomationML object

Data representation of an automation object or a group of automation objects

Note 1: The AUTOMATIONML object is the core element of AUTOMATIONML. It may contain administration items,
attributes, interfaces, relations and references. An AutomationML object is an individual instance and is derived from
standard AutomationML classes.

Note 2: AutomationML objects have a relation to their corresponding AutomationML class.

Note 3: Examples for relations are type-instance-relations and copy-instance-relations. Single instances can be
extended, e.g. by aggregated objects or attributes.

Note 4: AutomationML objects have a copy-instance-relation to their AutomationML class.

2.1.4 AutomationML class

Predefined AutomationML object type

Note 1: AutomationML classes are stored within AutomationML libraries.

Note 2: AutomationML classes define reusable sample solutions, characterized by attributes, interfaces and
aggregated objects.

Note 3: AutomationML classes can be used for multiple instantiations.

2.1.5 AutomationML attribute

Attribute which belongs to an AutomationML object

Note: AutomationML attributes are described as XML element corresponding to IEC 62424:2008.

2.1.6 AutomationML document

Certain CAEX document following IEC 62714 including all referenced sub documents

Note: AutomationML documents may be stored as files, but also e.g. as string or data streams.

2.1.7 AutomationML file

Certain CAEX file following IEC 62714 with the extension .aml excluding all referenced sub files

2.1.8 AutomationML interface

Single connection point that belongs to an AutomationML object and can be linked with another
interface

Note: Interfaces allow the description of relations between objects by the definition of CAEX InternalLinks. Examples
are a signal interface, a product interface or a power interface.

2.1.9 ECLASS Classification Class

Class for the classification of products into certain categories

2.1.10 ECLASS Property

Characteristic of a class

AutomationML and
 ECLASS integration

11

2.1.11 ECLASS Value List

A restrictive list of valid specifications of a property

2.1.12 ECLASS Value

A specification of a characteristic

2.1.13 ECLASS Unit

Standardized unit of measure

2.1.14 ECLASS Keyword

An alternative name of a class

2.1.15 ECLASS Synonym

An alternative name of a property

2.1.16 ECLASS Application Class

Class that comprises all characteristics described by properties

2.1.17 ECLASS Aspect

A specific collection of properties (class). An Aspect comprises all properties describing a
certain aspect of a product, not the product itself, e.g. packing information

Note: In contrast to Blocks, Aspects can only used on the first level of an Application Class.

2.1.18 ECLASS Block

A specific collection of properties (class). A Block comprises all properties describing a certain
part of a product

Note: A Block can be embedded in an Application Class on first level, in a Block itself and Aspects.

2.2 AutomationML library

Library containing AutomationML classes

2.2.1 Instance

Data representation of a specific real world item or concrete logical engineering item

2.2.2 Instance hierarchy

Hierarchy of AutomationML objects

2.2.3 Link

Connection between objects of the top-level format CAEX

Note: A link is modelled by means of CAEX InternalLink.

2.3 Abbreviations

For the purpose of this document the abbreviations listed in Table 1 apply.

Table 1 – Abbreviations

Abbreviation Meaning

AC Application Class

ASN Abstract Syntax Notation

AS Aspect

AutomationML Automation Markup Language

BL Block

AutomationML and
 ECLASS integration

12

Abbreviation Meaning

CAx Computer aided X

CAEX Computer Aided Engineering Exchange

CC Classification Class

COLLADA Collaborative Design Activity

CSI Code Space Identifier

CSV Comma Separates Values

DIN Deutsche Industrienorm

ECAD (E-CAD) Electrical engineering tool

EDS Electronic Data Sheet

GUID Global Unique Identifier

GSDML Generic Station Description Markup Language

GSD General Station Description

HMI Human Machine Interface

ICD International Code Designator

ID Identifier

IEC International Electrotechnical Commission

IE InternalElements

IH InstanceHierarchy

IRDI International Registration Data Identifier

ISO International Organization for Standardization

ISO/PAS International Organization for Standardization Public Available Standard

KW Keyword

MCAD (M-CAD) Mechanical engineering tool

OCL Object Constraint Language

OntoML Ontology Markup Language

OSI Open Systems Interconnection

P&I diagram Plant and instrumentation diagram

P&ID tool Plant and instrumentation diagram tool

PCE-CAE tool Process Control Engineering Computer Aided Engineering tool

PLC Programmable Logic Controller

PR Property

RUF Release-Update-File

STEP STandard for the Exchange of Product model data

SUC System unit classes

SUC LIB System unit Class Library

SY Synonym

TUF Transaction-Update-file

URL Uniform resource locator

UML Unified Modeling Language

URI Uniform Resource Identifier

UUID Universal Unique Identifier

XML Extensible Markup Language

VA Value

AutomationML and
 ECLASS integration

13

Abbreviation Meaning

VL Value List

W3C World Wide Web Consortium

2.4 Normative References

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.

IEC 60027 (all parts), Letter symbols to be used in electrical technology

IEC 61131-3:2013, Programmable controllers – Part 3: Programming languages

IEC 61158 (all parts), Industrial communication networks – Fieldbus specifications

IEC 61360 (all parts), Standard data element types with associated classification scheme for
electric components

IEC 61784 (all parts), Industrial communication networks – Profiles

IEC 62424:2008, Representation of process control engineering - Requests in P&I diagrams
and data exchange between P&ID tools and PCE-CAE tools

IEC 62714 (all parts), Engineering data exchange format for use in industrial systems
engineering – AutomationML

IEC TS 62720:2017, Identification of units of measurement for computer-based processing

ISO 13584-32:2010-12, Industrial automation systems and integration - Parts library - Part 32:
Implementation resources: OntoML: Product ontology markup language

ISO 6523 (all parts), Information technology - Structure for the identification of organizations
and organization parts

ISO 80000-1:2009-11, Quantities and units – Part 1: General

ISO/IEC 11179-6:2015-08, Information technology – Metadata registries (MDR) – Part 6:
Registration

ISO/IEC 9834-8:2014-08, Information technology - Open Systems Interconnection - Procedures
for the operation of OSI Registration Authorities: Generation and registration of Universally
Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components

ISO/PAS 17506:2012, Industrial automation systems and integration - COLLADA digital asset
schema specification for 3D visualization of industrial data

ISO/TS 29002-5:2009-02, Industrial automation systems and integration - Exchange of
characteristic data - Part 5: Identification scheme

Extensible Markup Language (XML) 1.0 1.0:2004, W3C Recommendation
(available at <http://www.w3.org/TR/2004/REC-xml-20040204/>)

PLCopen XML 2.0:December 3rd 2008 and PLCopen XML 2.0.1:May 8th 2009, XML formats
for IEC 61131-3 (available at http://www.plcopen.org/)

AutomationML and
 ECLASS integration

14

3 AutomationML

3.1 Basics

AutomationML is a solution for data exchange focusing on the domain of engineering of
automation systems.

The AutomationML data format, developed by AutomationML e.V., is an open, neutral, XML -
based and free data exchange format. It allows for a domain and company spanning transfer of
production systems’ engineering data in a heterogeneous engineering tool landscape. The goal
of AutomationML is to interconnect engineering tools in their different disciplines, e.g. plant
planning, mechanical engineering, electrical engineering, process engineering, process control
engineering, HMI development, PLC programming, robot programming, etc.

AutomationML stores engineering information following the object oriented paradigm and allows
modelling of physical and logical plant components as data objects encapsulating different
modelling aspects. An object may consist of other sub-objects, and may itself be part of a larger
composition or aggregation. Typical objects in plant automation comprise information on
topology, geometry, kinematics and logic, whereas logic comprises sequencing, behaviour and
control.

In addition, AutomationML follows a modular structure by integrating and enhancing/adapting
different already existing XML-based data formats and combining them under one roof: the so-
called top level format (see Figure 2). These data formats are used on an “as-is” basis within
their own specifications and are not branched for AutomationML needs. Logically ,
AutomationML is partitioned in:

◼ description of the plant structure and communication systems expressed as a hierarchy of
AutomationML objects and described by means of CAEX following IEC 62424,

◼ description of geometry and kinematics of the different AutomationML objects represented by means
of COLLADA 1.4.1 and 1.5.0 (ISO/PAS 17506:2012),

◼ description of control related logic data of the different AutomationML objects represented by means
of PLCopen XML 2.0 and 2.0.1, and

◼ description of relations among AutomationML objects and references to information that is stored in
documents outside the top level format.

Figure 2 – AutomationML base structure

Due to the different aspects of AutomationML, the IEC 62714 series consists of different parts,
each of which focuses on a different aspect of AutomationML:

AutomationML and
 ECLASS integration

15

◼ IEC 62714-1, Architecture and general requirements: This part specifies the general AutomationML
architecture, the modeling of engineering data, classes, instances, relations, references, hierarchies,
basic AutomationML libraries and extended AutomationML concepts. It is the basis of all future parts,
and it provides mechanisms to reference other sub formats.

◼ IEC 62714-2, Role class libraries: This part is intended to specify additional AutomationML libraries.

◼ IEC 62714-3, Geometry and kinematics: This part is intended to specify the modeling of geometry
and kinematics information.

◼ IEC 62714-4, Logic: This part is intended to specify the modeling of logics, sequencing, behavior and
control related information.

Further parts may be added in the future in order to interconnect further data standards to
AutomationML.

The basis of AutomationML is the application of CAEX as top level format and the definition of
an appropriate CAEX profile fulfilling all relevant needs of AutomationML to model engineering
information of production systems, to integrate the three data formats CAEX, COLLADA, and
PLCopenXML, and to enable an extension if necessary in the future.

CAEX enables an object oriented approach (see Figure 3) where

◼ semantic of system objects can be specified using roles defined and collected in role class libraries,

◼ interfaces between system objects can be specified using interface classes defined and collected in
interface class libraries,

◼ classes of system objects can be specified using system unit classes (SUC) defined and collected in
system unit class libraries, and

◼ individual objects are modeled in an InstanceHierarchy (IH) as a hierarchy of InternalElements (IE)
referencing

o system unit classes they are derived from and

o role classes defining their semantics and interface objects used to interlink objects
among each other or with externally modeled information (e.g. COLLADA and
PLCopenXML files).

Figure 3 – AutomationML topology description architecture

The use of CAEX within AutomationML is described in detail in [1].

IH

IE

IE

IE

IE

SUC
LIB

SUC

SUC

SUC

IE

Instance Hierarchy
Description of engineering

data

System Unit Classes
Reusable system

components

Roll Class Library
Definition of semantic

Interface Class Library
Definition of interfaces

Bib

Role

Role

Role

Role
Clas Lib

*.dae

*.xml

Instantiation of

objects

Use of interfaces

Use of

Semantic

Link

Reference

AutomationML and
 ECLASS integration

16

Pre-developed role class libraries applicable to derive necessary roles for semantic definition
in individual application cases are provided in [2].

The integration of geometry and kinematic models stored in COLLADA and appropriate
interface classes are detailed in [3].

The integration of behaviour models stored in PLCopen XML and appropriate interface classes
are detailed in [4].

3.2 Capabilities for semantic integration

The mapping of incoming data points to the data model of the importing tool is a critical point
during the import of data sets that are to be exchanged within engineering tools. Therefore, the
semantics of each data point related to the importing tool has to be specified.

Within the data import process of AutomationML based data, the incoming data points are given
within the InstanceHierarchy either as InternalElements or as attributes.

To identify the semantics of InternalElements , AutomationML provides two main mechanisms:
referencing of roles and referencing of SystemUnitClasses.

1. For the referencing of roles, the sub-objects RoleRequirements and
SupportedRoleClass are provided. They can contain the complete role name including
the role path.

2. In order to reference a SystemUnitClass, the attribute RefBaseSystemUnitPath can be
used. This contains the complete name and path of the SystemUnitClass in an arbitrary
SystemUnitClassLib.

For the representation of attribute semantics, the RefSemantic sub-attribute of an attribute
object can be used. It is given for each AutomationML attribute.

Figure 4 shows all these means for semantic representation.

Figure 4 – Means for data semantic modelling in AutomationML

Attributes

InternalElement

RefBaseSystemUnit
Path

SupportedRoleClass

RoleRequirements

……
…

……
…

…

Attribute

RefSemantic

……
…

AutomationML and
 ECLASS integration

17

4 ECLASS

ECLASS is a hierarchical semantic system for grouping materials, products and services
according to a logical structure. The level detail hereby corresponds to the product -specific
properties which can be described according to ISO 13584 and IEC 61360. Products and
services can be allocated to the four-level ECLASS class hirarchy. Search terms and synonyms
permit targeted sourcing of products and services within the classification. Lists of standardized
properties and values enable accurate description and subsequent identification of products
and services.

The content is inspected with regard to correctness and conformity to the underlying standards
(e.g. ISO 13584, IEC 61360, DIN 4002). Furthermore, several ECLASS expert groups validate
each change request for correctness with regard to form and content to ensure the high quality
of ECLASS. ECLASS is available to download in several languages from
http://www.eclassdownload.com.

ECLASS contains several kinds of structural elements like Classification Classes, Application
Class, Properties, Values, Value lists as well as Blocks and Aspects. Detailed definitions of the
structure elements can be found in http://wiki.eclass.eu and especially on
https://wiki.eclass.eu/wiki/Conceptual_data_model .

For the unique identification of each structural element ECLASS uses globally unique identifiers
for every object included in the ECLASS standard. This IRDI (International Registration Data
Identifier) is based on the international standard according to ISO 29002-5 as well as ISO/IEC
11179-6, ISO/TS 29002 and ISO 6523. For more details, please see
https://wiki.eclass.eu/wiki/IRDI

Furthermore, ECLASS contains a units library, to define the properties. Each unit-associated
property may express values (numbers) with regard to its basic unit. Please refer to
https://wiki.eclass.eu/wiki/Unit for detailed information and usage of “Units”.

4.1 ECLASS Repersentation and Exchange

ECLASS has only one dictionary. However, ECLASS has two representations and several
export formats.

The two representations are ECLASS Basic and Advanced, whereas Basic is only a view of
Advanced. This means that everything that is contained in Basic is also contained in Advanced.
Whereas Advanced offers more modeling features. The most important modeling features are
presented in the following chapter 4.2, as they are the motivation of this document.

To exchange the ECLASS dictionary ECLASS has different export and exchange formats. The
first format is CSV format, which is used to transfer the ECLASS Basic representation.

In addition, since introduction of ECLASS 7.0, an XML representation of ECLASS is availa ble.
This export format is based on the ISO-standardized XML format for product data exchange
ISO 13584-32:2010 (OntoML). These specifications offer a uniform and comparable data
structure for communications between machines. The XML representation allows the transfer
of Basic as well as Advanced.

Furthermore, a JSON serialization was introduced with the ECLASS web service. This also
supports both basic and advanced. For more details, please see
https://wiki.eclass.eu/wiki/ECLASS_Webservice

http://www.eclassdownload.com/
http://wiki.eclass.eu/
https://wiki.eclass.eu/wiki/Conceptual_data_model
https://wiki.eclass.eu/wiki/IRDI
https://wiki.eclass.eu/wiki/Unit
https://wiki.eclass.eu/wiki/ECLASS_Webservice

AutomationML and
 ECLASS integration

18

Figure 5 – ECLASS classification data structure

4.2 Modelling Features of ECLASS Advanced Representation

The integration of both the PROLIST standard and CAx elements IN ECLASS resulted in data
model extensions. These include Blocks (refer to 4.2.1) and aspects (refer to 4.2.2). Using
“Cardinality" multiplication elements (refer to 4.2.3) as well as variant access of special blocks
by means of “Polymorphism” (refer to 4.2.4) results in significant modelling simplification.

Implementation of additional data type extensions (Level type and axis type) results in further
simplifications. Consequently, a single data type combines physical -technical links originating
from various attributes.

It should therefore be possible to transfer the complex data model in a data structure configured
for that purpose.

4.2.1 Block

The concept of Blocks is a grouping of various properties under a single name. Using a block,
the properties of one class - especially if there is a large number of properties - can be grouped
and organized. This makes it easier to search and reuse properties in different areas of the
classification system. A Block may be used for detailed descriptions of components.

Using a car as an example, the block “Manufacturer” would contain all attributes to describe the
manufacture: Manufacture’s name, Model description, etc. Another block would then describe
the “wheel” properties. To create a block, a so-called reference property has to be used to bind
this Block to a class like Application class or an other Block .

Figure 6 – Example Block

AutomationML and
 ECLASS integration

19

4.2.2 Aspect

An aspect is a specific class that cannot be represented by cardinality or polymorphism and is
located in the top level of a class. An aspect does not describe the product specific property
itself (like ordinary blocks and class attributes), but it includes attributes for that class un der
certain conditions or additional attributes for a class under certain view points.

An example is the aspect “Operating conditions”. It describes under which conditions the car is
to be operated: Central Europe, the Arctic or desert. The resulting properties, however, such
as minimum starting temperature or operational altitude are attributes of the “car” class and
aspect elements.

4.2.3 Cardinality

For structuring of Properties apart from blocks ECLASS also supports cardinality. “Cardinality”
refers to the property allowing dynamic multiplication of a block within the scope of the property
values to be managed. Within the product description, cardinality is a possibility to determine
the number of identical blocks.

In case of the “car” example, “cardinality” could useed to describe the doors. For instance, the
attributes color, door type, and electric window levers describe the doors. A „door
property“ block combines these attributes, which can be multiple instanced using the reference
property “number of doors”. To describe a 3-door vehicle, the value “3” has to be set for the
reference property “number of doors”. As a result, the “door property” block has to be rated
three times.

Figure 7 – Example for Cardinality

4.2.4 Polymorphism

Polymorphism implies that the block content is not assigned within a class but that only after
an allocation of values to the attributes it is dynamically decided which block content is actually
required (only at this stage it is determined, data-technically, which block is to be selected from
a number of blocks).

The properties of this multiple (“poly”) substitutability (“morphism”) resulting from this special
variant are therefore used to describe various details of a product structure keeping the number
of total attributes manageable and free of redundancies.

In the case of our “car” example, you could use polymorphism to describe the type of doors.
The driver’s door attributes differ compared to the hatch attributes. For instance, the driver ’s
door could have the attributes electric window lever, automatic lock, loudspeakers etc., whereas

AutomationML and
 ECLASS integration

20

the hatch door would rather have attributes such as windscreen wipers available, rear heated
windscreen etc.

Figure 8 – Example for polymorphism in ECLASS

In the “wheel” example of the “car” class, you will find that the attributes for a wheel with double
tires will be quite different from a wheel with single tires. Therefore, if values are to be allocated
to a “wheel” block one will first have to decide which type of wheel is to be described: Single
tire or double tire. Following the decision for “double tires”, the block “wheel with double tires”
is accessed and related attributes made available (from the data-model point of view, the block
“wheel” is replaced by a specialization “wheel with double tires”).

AutomationML and
 ECLASS integration

21

5 Use Cases and Considered Data Exchange Structures

Within the engineering of production systems several activities require a unique identification
of data objects. Nevertheless, not all possible cases are relevant for the application of data
exchange formats. The following section describes the relevant use cases necessary for the
application of unique identification of data objects during the data exchange between
engineering tools in the production system engineering process as well as the relevant
information sets within them are named.

Table 2 – Overview Use Cases

Name Category Short description

Simple semantic
identification technical Enrich AutomationML objects or attributes with semantic based

on ECLASS catalogue or properties.

Semantic identification
including property
guarantees

technical
Enrich AutomationML objects with semantic based on ECLASS
catalogue and guarantee existence of property information.

Semantic identification
including structure
guarantees

technical
Enrich AutomationML objects with semantic based on ECLASS
catalogue and guarantee existence of object substructures.

Exchange of semantically
unique instance data

exchange
Semantically unique exchange of engineering data between two
tools

Encode data semantics exchange
Semantically unique encoding of engineering information in case
of information export from a tool

Decode data Semantics exchange
Semantically unique decoding of engineering information in case
of information import to a tool

ECLASS dictionary
exchange

exchange
Create, maintain and provide AutomationML libraries encoding
ECLASS dictionary required to define/identify/validate the
semantic of AutomationML objects

Receive ECLASS dictionary exchange
Receiving ECLASS dictionary and creation of AutomationML
libraries encoding ECLASS dictionary

Deliver ECLASS dictionary exchange Enrich the ECLASS dictionary based on request

Development and use of
semantically unique
component libraries

application
Creation and use of SystemUnitClass libraries useable within
different engineering processes containing AutomationML objects
with a unique object and property semantics

Lossless exchange between
system configurator an CAx
tool

application
Exchange of engineering results between engineering tools
containing semantically unique identifiable AutomationML objects

Construction validation application
Validation of applicability of selected system components based
on uniquely identifiable component properties

5.1 Technical Use Cases

The first set of use cases is technically motivated. It considers the degree of semantic
identification of objects resulting in different necessary technical solutions for the semantic
representation.

5.1.1 Use case – simple semantic identification

Following Figure 1, basic requirement for the data exchange is the capability to identify the
semantics of an object to enable the correct mapping of the object t o object types of the data
model of the data receiving tool. This semantic identification simply has to describe the meaning
of the object within a data model, i.e. the object type. Examples of such a simple semantic
identification are the indication, that a data object represents an inductive sensor, a special
drive type or a complete industrial robot or a chemical reactor.

As there are various semantic definitions available in the different industries as well as industry
crossing semantic definitions it shall not be the responsibility of AutomationML to define a new
semantic catalogue. Instead, existing catalogues shall be applied for the semantic
representation.

AutomationML and
 ECLASS integration

22

This use case will provide the following requirements to AutomationML:

◼ AutomationML shall enable the integration of a semantic reference to an external defined semantic
definition.

◼ AutomationML shall enable the identification of a used semantic catalogue.

◼ AutomationML shall enable the unique identification of the catalogue object relevant for the semantic
identification of the exchanged data object.

5.1.2 Use case – semantic identification of properties

In several cases of semantic identification it is not sufficient to simply represent the object type
but to provide guarantees about available information within the provided data object. The data
receiving tool has to map the information provided within a data object in a structured way to
the internal data model including the mapping of properties, attributes, etc. Therefore, it is
necessary to extend the simple object identification by guarantees about available information
within the provided data object as well as its representation (naming, data type, etc.) within the
provided data object.

As an example an inductive sensor or a special drive type can have special object class related
information like a vendor identification, a material description, an energy consumption etc. The
industrial robot can provide information about its possible work space and the chemical reactor
information about the maximum volume.

As in the case of a simple semantic identification, there are catalogues available specifying
relevant properties and attributes for the object classes. These catalogues shall be applicable
for semantic identification including property guarantees in AutomationML.

This use case will provide the following requirements to AutomationML:

◼ AutomationML shall enable the integration of a semantic reference to an external defined semantic
definition.

◼ AutomationML shall enable the identification of a used semantic catalogue.

◼ AutomationML shall enable the unique identification of the catalogue object relevant for the semantic
identification of the exchanged data object.

◼ AutomationML shall enable the definition and identification of object properties (attributes) by
referencing the relevant properties (attributes) in the used catalogue.

5.1.3 Use case – semantic identification of structures

In addition to the use cases identified above, the semantic representation may provide
guarantees about the provided data substructure available within the provided data object and
the relations between the data objects. The data receiving tool has to map the substructure and
its relations in a structured way to the internal data model. Therefore, it is ne cessary to extend
the object identification by guarantees about available substructure and relations within the
provided data object as well as its representation (naming, identification, etc.) within the
provided data object.

As an example a special drive type can contain a break with its own properties. The industrial
robot usually consists of a set of axis all interrelated in a special way. Finally the chemical
reactor consists of a set of mechanical parts and automation / process equipments like electri cal
drive driven stirrers, heaters, temperature sensors, etc. In addition , their data objects may be
interrelated. For example, if a chemical reactor has a heater it will usually also have a
temperature sensor. This needs to be represented in the guarantees.

As in the case of a simple semantic identification, there are catalogues available specifying
relevant structures and its properties / interrelations for the object classes. These catalogues
shall be applicable for semantic identification including structure guarantees in AutomationML.

This use case will provide the following requirements to AutomationML:

AutomationML and
 ECLASS integration

23

◼ AutomationML shall enable the integration of a semantic reference to an external defined semantic
definition.

◼ AutomationML shall enable the identification of a used semantic catalogue.

◼ AutomationML shall enable the unique identification of the catalogue object relevant for the semantic
identification of the exchanged data object.

◼ AutomationML shall enable the definition and identification of object properties (attributes) by
referencing the relevant properties (attributes) in the used catalogue.

◼ AutomationML shall enable the definition and identification of object structures (subobject and its
dependencies to properties) by referencing the relevant structures in the used catalogue.

5.2 Exchange use cases

The second set of use cases is motivated by the engineering process. The engineering of
production systems contains several engineering activities from different engineering domains.
Figure 9 represents an example set of engineering activities relevant within the general
engineering process of production systems.

Figure 9 – General engineering activities embedded within production system
engineering (subset)

Within the named engineering activities, engineering tools like the following (but not limited to)
will have a relevant impact:

◼ Plant planning tool

◼ Mechanical engineering tool (MCAD)

◼ Electrical engineering tool (ECAD)

◼ PLC programming tool

◼ Robot programming tool

◼ HMI programming tool

◼ Network configuration tool

◼ Simulation tool

◼ Virtual commissioning tool

◼ Monitoring tool

◼ Maintenance tool

◼ Documentation tool

For the data exchange between these tools a system of use cases is relevant providing the
capabilities to semantically unique exchange data points.

The central use case is the use case “exchange of semantically unique instance data”. This use
case covers the exchange of information between two engineering tools. This use case can be

Plant planning
Virtual

commissioning
Documentation

HMI

programming

Monitoring

Maintenance

…

PLC

programming

Electrical

engineering

Mechanical

engineering

Robot

programming

Network

configuration

Simulation

HMI

programming

AutomationML and
 ECLASS integration

24

extended to use cases like “development and use of semantically unique component libraries”,
“lossless exchange between system configurator and CAx tool”, and “construction validation”.

Within the use case “exchange of semantically unique instance data” three supporting use
cases are embedded. These are the use case “encode data semantics” for syntactically and
semantically unique encoding of data objects exchanged, the use case “decode data semantics”
for syntactically and semantically unique decoding of data objects exchanged, and the use case
“ECLASS dictionary exchange” required to enable the semantically unique identification of data
points.

The later use case consists of two sub use cases for delivering and receiving an ECLASS
dictionary.

Within the use cases, three main actors are involved. These are the sending and the receiving
engineer involved and driving the use case “exchange of semantically unique i nstance data”
and the ECLASS association involved in the use case “deliver ECLASS dictionary”.

The named use case structure is depicted in Figure 10.

Figure 10 – System of relevant use cases for semantically unique exchange of data
points

In the following, the before mentioned use cases are characterized in detail. Prior some main
assumptions are named.

5.2.1 Assumptions for considered use cases

In the following, only the actors sending engineer, receiving engineer and ECLASS association
are considered. Within the other AutomationML and ECLASS specifications mainly further
actors are identified. Without definition of completeness it is assumed, that the actors sending
engineer and receiving engineer can be engineers of different engineering disciplines. For
example these engineers could be:

◼ Standard Plant Planner

◼ New production planner (Mechanics)

◼ New production planner (Electrics)

◼ Series production planner (Mechanics)

◼ Hall layout planner

◼ Mechanical Simulation Engineers / Offline Programmer

◼ Robot Programmer

◼ Mechanical Design Engineer

◼ Electrical Design Engineer

AutomationML and
 ECLASS integration

25

◼ PLC Programmer

◼ HMI Programmer

The actor ECLASS association subsumes all engineers, companies, and other legal entities
involved in the standardization process of ECLASS dictionaries. It is out of scope of this
document to further distinguish their different roles and actions.

In addition, the following use cases will consider only a sending and a receiving tool. Without
definition of completeness it is assumed, that the sending and the receiving tool can be
engineering tools of different engineering disciplines. For example, these tools could be:

◼ Computer Aided Mechanical Design tools (M-CAD)

◼ Simulation tools

◼ Computer Aided Electrical Engineering tools (CAE) and

◼ Control Programming tools.

5.2.2 Use case - exchange of semantically unique instance data

The main goal of this use case is the semantically unique exchange of engineering data
between two engineering tools. Thereby, two engineers shall be able to select a part of the
project data available in a sending engineering tool, assign them with a unique semantic
identification, transfer them to a receiving engineering tool, identify the semantics of data
objects, and, finally, integrate them in the project data of the receiving tool.

The critical point within this use case is the implementation of the necessary mapp ing of the
data models of the sending and receiving tool as indicated in Section 1. This mapping shall be
established by utilization of the same semantic dictionary within the sending and the receiving
tool.

Within this use case, only a sending and a receiving engineer as well as a sending and a
receiving engineering tool are involved. They will execute the following normal flow of activities
also given in Figure 11.

1. The sending engineer will select the subset of the project data of the sending
engineering tool for data exchange.

2. The sending engineer will utilize the set of AutomationML semantic libraries to establish
the ECLASS dictionary for data object encoding (assigning a unique object semantics
to each relevant data object).

3. The sending engineer will store the decoded data wi thin an AutomationML project.

4. The receiving engineer will read the stored AutomationML project.

5. The receiving engineer will utilize the set of AutomationML semantic libraries to
establish the ECLASS dictionary for data object decoding (identifying unique object
semantics to each relevant data object).

6. The receiving engineer will integrate the read data objects within the project data of the
receiving tool.

AutomationML and
 ECLASS integration

26

Figure 11 – Activity structure of use case "exchange of semantically unique instance
data"

Within this use case the project data of the sending engineering tool as well as the set of
AutomationML semantic libraries establishing the ECLASS dictionary have to be seen as input
data while the project data of the receiving engineering tool are output data.

This use case will provide the following requirements to AutomationML:

◼ AutomationML shall define a methodology to attach a unique identification of object semantics to
each relevant data object (InternalElements, SystemUnitClasses, Interfaces, Attributes).

◼ AutomationML shall define a methodology for creation of a set of AutomationML semantic libraries
establishing the ECLASS dictionary based on the ECLASS dictionary specifications.

In case of application an ECLASS dictionary following of ECLASS basics this use case requires
the implementation of technical use cases

◼ Simple semantic identification and

◼ Semantic identification including property guarantees.

In case of application of an ECLASS dictionary following ECLASS advanced this use case
requires the implementation of technical use cases

◼ Simple semantic identification,

◼ Semantic identification including property guarantees, and

◼ Semantic identification including structure guarantees.

5.2.3 Use case – encode data semantics

One part of the use case "exchange of semantically unique instance data" is the encoding of
selected engineering data within the sending engineering tool. The execution of this encoding
process is the main goal of this use case. Thus, this use case covers the automatic / semi -
automatic association of a unique semantic to each relevant data object (InternalElements,
SystemUnitClasses, Interfaces, Attributes) within the sending engineering tool.

The critical point within this use case is the assignment process of semantics to data objects
and, thereby, the mapping of the data model of the sending tool to the semantic dictionary.

AutomationML and
 ECLASS integration

27

Within this use case, only the sending engineer and the sending tool are involved. They will
execute the following normal flow of activities also given in Figure 12. This normal flow of
activities assumes that the set of engineering data to be exchanged has been selected
previously.

1. The sending engineer will select the relevant AutomationML semantic library out of the
set of AutomationML semantic libraries establishing the ECLASS dictionary for semantic
mapping.

2. The sending engineering tool executes the following steps for each data object to be
exchanged:

a. Identifying the semantics of the data object within the data model of the sending
tool.

b. Selecting the corresponding unique semantic identification out of the selected
AutomationML semantic library.

c. Assigning selected unique semantic identification to selected data object.

Figure 12 – Activity structure of use case "Encode data semantics"

Within this use case the selected part of project data of the sending engineering tool to be
exchanged as well as the set of AutomationML semantic libraries establishing the ECLASS
dictionary have to be seen as input data while selected part of project dat a of the sending
engineering tool to be exchanged with assigned AutomationML semantic references are output
data.

This use case will provide the following requirements to AutomationML:

◼ AutomationML shall define a methodology to enable a one to one mapping of sending tool data object
semantics to a unique semantic identification of the AutomationML semantic libraries establishing
the ECLASS dictionary.

In case of application of an ECLASS dictionary following ECLASS basics this use case requires
the implementation of technical use cases

◼ Simple semantic identification and

◼ Semantic identification including property guarantees.

In case of application of an ECLASS dictionary following ECLASS advanced this use case
requires the implementation of technical use cases

◼ Simple semantic identification,

AutomationML and
 ECLASS integration

28

◼ Semantic identification including property guarantees, and

◼ Semantic identification including structure guarantees.

5.2.4 Use case – decode data semantics

One part of the use case "Exchange of semantically unique instance data" is the decoding of
exchanged engineering data within the receiving engineering tool. The execution of this
decoding process is the main goal of this use case. Thus, this use case cov ers the automatic /
semi-automatic exploitation of the assigned unique semantics to each relevant data object
(InternalElements, SystemUnitClasses, Interfaces, Attributes) within the receiving engineering
tool.

The critical point within this use case is the evaluation process of semantics of received data
objects and, thereby, the mapping of the semantic dictionary to the data model of the receiving
tool.

Within this use case only the receiving engineer and the receiving tool are involved. They will
execute the following normal flow of activities also given in Figure 13. This normal flow of
activities assums, that the set of engineering data to be exchanged has been stored as an
AutomationML project previously and can be read by the receiving tool.

1. The receiving engineer will select the relevant AutomationML semantic library out of the
set of AutomationML semantic libraries establishing the ECLASS dictionary for semantic
mapping.

2. The receiving engineering tool executes for each data object read out of the provided
AutomationML project:

a. Identify the semantics of the data object within the received AutomationML
project following the selected AutomationML semantic library.

b. Select the corresponding object semantic within the data model of the receiving
engineering tool.

c. Assign selected semantics to selected data object.

Figure 13 – Activity structure of use case "decode data semantics"

Within this use case the AutomationML project with the exchanged data objects as well as the
set of AutomationML semantic libraries establishing the ECLASS dictionary have to be seen as
input data while exchanged data objects with assigned object semantics of the receiving
engineering tool are output data.

This use case will provide the following requirements to AutomationML:

AutomationML and
 ECLASS integration

29

◼ AutomationML shall define a methodology to enable a one to one mapping of receiving tool data
object semantics to a unique semantic identification of the AutomationML semantic libraries
establishing the ECLASS dictionary.

In case of application of an ECLASS dictionary following ECLASS basics this use case requires
the implementation of technical use cases

◼ Simple semantic identification and

◼ Semantic identification including property guarantees.

In case of application an ECLASS dictionary following of ECLASS advanced this use case
requires the implementation of technical use cases

◼ Simple semantic identification,

◼ Semantic identification including property guarantees, and

◼ Semantic identification including structure guaranties.

5.2.5 Use case – ECLASS dictionary exchange

One part of the use case "exchange of semantically unique instance data" is the exchange of
the ECLASS dictionary required for the creation of the set of AutomationML semantic libraries
establishing the ECLASS dictionary. Thus, this use case covers the process of acquiring the
necessary ECLASS dictionary, its automatic translation to the set of AutomationML semantic
libraries, and its provision to the sending and receiving engineer for use within the data
exchange process for semantic mapping.

Within this use case the ECLASS actors, the sending and the receiving engineer and the
sending and the receiving tools are involved. They will execute the following normal flow of
activities also given in Figure 14.

1. Based on request the ECLASS actor is creating/maintaining and providing the ECLASS
dictionary.

2. The sending and/or receiving engineer is translating the ECLASS dictionary to the set
of AutomationML semantic libraries establishing the ECLASS dictionary for semantic
mapping.

Figure 14 – Activity structure of use case "ECLASS dictionary exchange"

Within this use case the request for ECLASS dictionary provision is seen as input data while
the provided set of AutomationML semantic libraries establishing the ECLASS dictionary is
considered as output data.

AutomationML and
 ECLASS integration

30

This use case will provide the following requirements to AutomationML:

◼ AutomationML shall define a methodology for automatic creation of a set of AutomationML semantic
libraries establishing the ECLASS dictionary based on the ECLASS dictionary specifications.

In case of application of an ECLASS dictionary following ECLASS basics this use case requires
the implementation of technical use cases

◼ Simple semantic identification and

◼ Semantic identification including property guarantees.

In case of application an ECLASS dictionary following of ECLASS advanced this use case
requires the implementation of technical use cases

◼ Simple semantic identification,

◼ Semantic identification including property guarantees, and

◼ Semantic identification including structure guarantees.

5.2.6 Use case – receive ECLASS dictionary

One part of the use case "ECLASS dictionary exchange" is the use of the ECLASS dictionary
for creation of the set of AutomationML semantic libraries establishing the ECLASS dictionary.
Thus, this use case covers the process of automatic translation of the ECLASS dictionary to
the set of AutomationML semantic libraries, and its storing as AutomationML data objects.

Within this use case the sending and the receiving engineer and the sending and the receiving
tools are involved. They will execute the following normal flow of activities also given in
Figure 15. This use case, assumes that the ECLASS dictionary is available.

1. The published ECLASS dictionary is read.

2. The sending and/or receiving engineer is translating the ECLASS dictionary to the set
of AutomationML semantic libraries establishing the ECLASS dictionary for semantic
mapping.

Figure 15 – Activity structure of use case "receive ECLASS dictionary"

Within this use case the published ECLASS dictionary is seen as input data while the provided
set of AutomationML semantic libraries establishing the ECLASS dictionary is considered as
output data.

This use case will provide the following requirements to AutomationML:

AutomationML and
 ECLASS integration

31

◼ AutomationML shall define a methodology for automatic creation of a set of AutomationML semantic
libraries establishing the ECLASS dictionary based on the ECLASS dictionary specifications.

In case of application of an ECLASS dictionary following ECLASS basics this use case requires
the implementation of technical use cases

◼ Simple semantic identification and

◼ Semantic identification including property guarantees.

In case of application of an ECLASS dictionary following ECLASS advanced this use case
requires the implementation of technical use cases

◼ Simple semantic identification,

◼ Semantic identification including property guarantees, and

◼ Semantic identification including structure guarantees.

5.2.7 Use case – deliver ECLASS dictionary

One part of the use case "ECLASS dictionary exchange" is the provision of the ECLASS
dictionary by the ECLASS actor. Thus, this use case covers this provision process.

Within this use case only the ECLASS actor is involved. He will execute the following normal
flow of activities also given in Figure 16.

1. Based on request the ECLASS actor is either defining new components of the ECLASS
dictionary or maintains existing ones.

2. The ECLASS actor is publishing the ECLASS dictionary following the usual publication
process of ECLASS association.

Figure 16 – Activity structure of use case "deliver ECLASS dictionary"

Within this use case the published ECLASS dictionary is seen as output data while there are
no input data.

This use case will provide no requirements to AutomationML.

Note: AutomationML will not automatically provide access to ECLASS dictionaries. The access and use rights for
ECLASS dictionaries and all other properties of ECLASS association have to be purchased or acquired in further
ways from ECLASS association.

AutomationML and
 ECLASS integration

32

5.3 Application use cases

The use cases of the third set are motivated by tools, task and application, that uses the
technical and exchange use cases.

Figure 17 – System of relevant use cases for semantically unique exchange of data
points

5.3.1 Use case - development and use of semantically unique component libraries

Within the engineering process of production systems it shall be possible to uniquely identify
the semantics of data points given within a library of plant components. This unique
identification of the semantics is required on different levels of detail including the semantics of
a plant component (special type of drive, special type of robot, etc.), the semantics of its internal
engineering artifacts (mechanical construction, electrical wiring, …) and the semantics of
properties / parameters / attributes (size in 3D coordinates, weight, …). The unique
identification of semantics has to be created by the library element creator and shall be
exploited by all other engineers.

Hence, the use case “development and use of semantically unique component libraries” is an
extension of the use case “exchange of semantically unique instance data”. Here the exchanged
instance data are plant components without/out of a component library.

Within this use case the sending engineer and the receiving engineer are involved while the
sending engineer is usually a component designer and while the receiving engineers can be
new production planner (Mechanics), new production planner (Electrics), series production
planner (Mechanics), hall layout planner, mechanical simulation engineers / offline programmer,
robot programmer, mechanical design engineer, electrical design engineer, PLC programmer,
HMI programmer and others. The involved tools will cover the complete range of tool named in
section 5.2.1. They will execute the following normal flow of activities.

1. A library element is created and attached with a semantic identification.

2. An sending engineer is creating and engineering artifacts related to the library element.
It adds the engineering artifact semantics.

3. An sending engineer is specifying a property / parameter / attribute related to the library
element. It adds the property / parameter / attribute related semantics.

4. Repeat 2. and 3 as often as necessary.

5. The library element is stored in the library.

AutomationML and
 ECLASS integration

33

6. A receiving engineer is reading the library element from the library and is able to identify
semantics of the library element, its engineering artifacts and its properties /
parameters/ attributes.

The described activity sequence is depicted in Figure 18.

Figure 18 – Activity structure of use case "development and use of semantically unique
component libraries"

5.3.2 Use case - lossless exchange between system configurator and CAx tool

Within the early engineering phases of production systems system components are designed
by combining sets of sub-components out of component libraries by configuration tools and the
provision of this configuration to a subsequent CAx tool. Examples of such engineering activities
are

◼ the combination of manufacturing resources like welding cells and mounting stations following a
given assembling sequence for body work in car manufacturing industry and the transmission of the
developed structure to a plant simulation tool,

◼ the combination of electrical wiring components on mounting rails for control cabinet manufacturing
and the transmission of the developed structure to a ECAD tool, and

◼ the combination of IEC 61131-3 Function blocks following a behaviour specification for PLC
programming and its subsequent transfer to a PLC programming software.

The critical points in this process are the unique identification of objects selected in the
configuration step, the modelling and transfer of relation information expressing the
dependencies / orders / sequences / etc. between the selected components, and the expression

AutomationML and
 ECLASS integration

34

of overall information characterising the complete set of combined objects as production system
components.

Figure 19 provides an overview over this use case and its relation to the other use cases
described.

Figure 19 – Structure of use case „lossless exchange between system configuration
tool and CAx tool“

Within this use case the sending engineer usually in the role as solution configurator and the
receiving engineer in the role as CAx engineer as well as the configu ration tool and the CAx
tool are involved. They will execute the following normal flow of activities.

1. The solution configurator is collecting all necessary components for the solution
2. The solution configurator specifies the overall system structure out of the components

and its describing properties
3. The solution configurator encodes the description to a data transfer file.
4. The CAx engineer decodes the description from the data transfer file.
5. The CAx engineer exploits the system description within his work.

The described activity sequence is depicted in Figure 20.

AutomationML and
 ECLASS integration

35

Figure 20 – Activity structure of use case „lossless exchange between system
configuration tool and CAx tool“

Within this use case the set of described components with its properties is seen as input data
while the complete system configuration is seen as output data.

This use case will provide the following requirements to AutomationML:

◼ Objects shall have a reference to ECLASS dictionary (IRDI)

◼ Properties shall have a reference to ECLASS dictionary (IRDI)

5.3.3 Use case - construction validation

Within engineering processes of production systems in various situations engineers have to
select appropriate system components / devices / etc. following given requirements or to decide
if a given design / construction fulfills a set of requirements. Examples of such engineering
activities can be

◼ the selection of an appropriate drive for a drive chain from a drive vendor library,

◼ the identification of appropriate process parameter sets for a chemical reaction from a given reaction
process library, or

◼ the validation of mechanical properties of an assembly.

Assuming a given list of requirements and a system description, then in all cases an automatic
or manual validation procedure shall entail exactly one of the two propositions: “the described
system fulfills the requirements” or “the described system does not fulfill the r equirements”.

For this purpose the structured, static and deterministic properties are exploited. They are
defined as requirements prior to the system design / engineering process and validated based
on system descriptions after the system design / engineering process.

To evaluate the requirement properties the different information necessary to evaluate them
have to be uniquely identifiable and comparable. Those identifiers have to be used in order to
link construction elements to requirements. Thus each requirement may be considered within
validation procedures, which have the same semantics on the requirements and construction
side.

Figure 21 provides an overview for this use case and its relation to the other use cases
described.

AutomationML and
 ECLASS integration

36

Figure 21 – Structure of use case “validation of construction”

Within this use case the requirements engineer, the design engineer, the validation engineer
and the validation system are involved. They will execute the following normal flow of activities
also given in Figure 21.

1. A requirements engineer defines types of system components and supplements those
type descriptions with required attributes and sometimes with sub-component
descriptions. For each attribute one or more combinations of attribute value and
equality/inequality operator are added. Those required type-related component
descriptions are sometimes called “typicals”. In the following they are called “role
classes” in order to match the AutomationML name space.

2. The requirements engineer or the design engineer defines the structure of a system by
creation of a tree or network like structure of objects, each representing one instance
element of the future real world system. The whole data struc ture is called “instance
hierarchy” in the following.

3. The requirements engineer or the design engineer creates relations between instance
elements of the instance hierarchy and role classes.

4. The design engineer attaches type representatives of real -world components (devices,
machines, etc.) to the instance elements or enriches instance elements with attribute
values.

5. The validation engineer compares all attribute values of instance elements with the role
class attribute values of the related role class for all instance elements with attached
role classes. Base for the comparison are the equality/inequality operators attached to
the role class attributes. If all comparisons entailed true, then the validation engineer
signals “the system construction fulfills the requirements” otherwise she signals “the
system construction does not fulfill the requirements”. Additionally a list of comparison
cases are reported, which entailed “false”.

AutomationML and
 ECLASS integration

37

Figure 22 – Activity structure of use case "validation of construction”

Within this use case the requirements data and libraries typically coming from planning and
construction tools as well as libraries of system components coming from product data bases
are seen as input data. Output data is the evaluat ion result as a Boolean value.

This use case will provide the following requirements to AutomationML:

◼ Role classes shall be applicable to model uniquely required system characteristics

◼ Role class attributes should be enriched with fixed relation between ID and semantics

◼ Role class attribute values shall be combinable by equality/inequality operators to model
requirements

◼ Instance elements shall contain references to role classes and thus implicitly to namespaces of
attribute names

◼ Instance element shall contain attribute values

The previously mentioned methods for the construction validation are related to attribute values.
There may be further requirements specified regarding the parent, sibling or sub -instance
hierarchy elements of an element to be validated. Those validations may be processed by
involving further requirements specification facilities such as the introduction of Object
Constraint Language (OCL) expressions (see [5]). Nevertheless the clear semantic definition of
attributes would be a necessity for those validation procedures too.

5.4 Boundary Conditions for Application

Within the execution of the use cases some technical and legal bordering conditions shall be
considered.

The developed ECLASS classification is a very encyclopaedic classification. It contains a huge
amount of classes. Not all of them are relevant within an application case. Therefore, in advance
to an application case is shall be defined which of the classification classes will be applied in
the AutomationML based modelling, i.e. the relevant part of the ECLASS classification is
identified. For example the consideration of automation related systems, devices, and
components can be made only reflecting classes with the classification 27 -*-*-*.

It may happen that in an application case not all relevant elements can be classified by using
ECLASS classification. In this case other classification standards might be identified for
application. It shall me ensured, that also these classification standard will follow the
international standards ISO/IEC 11179-6, ISO/TS 29002, and ISO 6532 and provide an IRDI for
identification of the classification classes.

AutomationML and
 ECLASS integration

38

If the relevant part of the ECLASS classification is identified it has to be ensured, that the
application of this part is legally possible. ECLASS is protected by licensing rights of
different types. For each application case the right license conditions shall be identified and
used. The different ECLASS license models are available under
http://www.eclassdownload.com/catalog/ eclass_categories.php.

In any way in each application case the licensing rights shall be respected.

AutomationML and
 ECLASS integration

39

6 Realization of technical use cases

In order to realize the use case “simple semantic identification” as specified in 5.1.1, two cases
have to be distinguished. First, the semantic description of AutomationML objects and second,
the specification of the semantics for single attributes. Within the first case, the ECLASS
classification to specify the semantics of AutomationML objects is needed. In contrast, the
second case requires the IRDI according to the ECLASS classificationsystem structure for a
property to define the attribute semantic.

In order to realize the use case “Semantic identification including property guarantees” as
specified in section 5.1.2, it is necessary to go beyond simple referencing of a catalogue object.
In contrast, it is necessary to integrate the semantic representation by using the standardized
semantic representation.

The following chapters describe the necessary steps and building blocks to implement these
two use cases. To specifiy semantics of AutomationML objects the role model is used.
Therefore, in 6.1 the generation and application processes for an ECLASS role class library is
described. To specifiy semantics of AutomationML attributes chapter 6.2 introduces a common
concept. For a concrete product description both concepts are necessary. This is described in
chapter 6.3 and summed up with a full example.

Note: All examples in this chapter are based on the ECLASS Release number 11.0.

6.1 Integration of object semantics

In order to define the semantics of an AutomationML object unambiguously with the help of a
semantic specification, the AutomationML concept of role classes can be used. Therefore, a
new AutomationML role class has to be defined. This chapter describes the generation and
application process for ECLASS as AutomationML role model.

Therefore, first general rules for role classes are defined in 6.1.1, according to which 6.1.2
describes the generation process of a role class library. Afterwards 6.1.3 describes the
application briefly. The chapter ends with an example demonstrating the de finded concepts in
6.1.4.

Note: Since this notation “eClassClassSpecification” as well as “eClassRoleClassLib” were already introduced in
version 1.0 of this document, and, to allow legacy systems to interpret it, the notation is continued.

6.1.1 Generation of eClassClassSpecification

The detailed specification of this role class with the name “ClassSpecification” can be found in
Table 3.

AutomationML and
 ECLASS integration

40

Table 3 – Definition eClassClassSpecification

Role class name eClassClassSpecification

Description
The role class “eClassClassSpecification” shall be used in order to reference the
corresponding ECLASS Classification Class for the AutomationML object.

Parent Class AutomationMLBaseRole

Attributes

“Standard”
(AttributeDataType=”xs:string”)

The attribute “Standard” shall define the version of
the ECLASS catalogue, to which the ECLASS
category is related, or alternatively, which
classification standard is used
The values of the attribute shall be described as
follows:
ECLASS-“major release”.”release”
Example: ECLASS-8.1 or ECLASS-9.0
“major release” is the number of the major release
of the ECLASS version.
“release” is the number of the subrelease of the
ECLASS version.

“ClassificationClass”

(AttributeDataType =”xs:string”)

The attribute “ClassificationClass” shall define the
ECLASS Classification Class for the AutomationML
object. The value shall be the coded name of the
classification class as 8-digit integer. Thereby, two
digits shall be used for each hierarchical level of
the class structure.

Example: 27242201

• 27 for “segment” (Electric engineering,
automation, process control engineering)

• 24 for „Main group“ (Control)

• 22 for “Group“ (Programmable logic control)

• 01 for Sub-group or commodity class-product
group (PLC analouge input/output module)

“IRDI”

(AttributeDataType =”xs:string”)

The attribute “IRDI” shall contain the IRDI for the
classification class.

The value shall be coded according to ECLASS
definition.

Example:

0173-1#01-AFZ776#018

Figure 23 shows the XML description of the AutomationML role class
“eClassClassSpecification”.

<RoleClass Name=”eClassClassSpecification” RefBaseClassPath=”AutomationMLBaseRoleClassLib/AutomationMLBaseRole”>

 <Attribute Name="IRDI" Attr ibuteDataType="xs:str ing">
 <Description>Specifies the IRDI for the classif ication class</Description>
 </Attribute>
 <Attribute Name="ClassificationClass" Attr ibuteDataType="xs:string">
 <Description>Specifies the ECLASS Classification Class for the AutomationML object coded as 8 -digit integer with two digits for
each hierarchical level of the class structure .</Description>
 </Attribute>
 <Attribute Name="Standard" Attr ibuteDataType="xs:string">
 <Description>Specifies the version of the ECLASS catalogue, which the ECLASS category is related to </Description>
 </Attribute>
</RoleClass>

Figure 23 – XML description of the role class eClassClassSpecification

6.1.2 Role class library generation process

First, a role class library has to be developed modelling the used catalogue. Without loss of
generality and based on IEC 61360 in the following it is assumed, that

◼ the catalogue is structured as a hierarchical tree,

◼ each tree node represents a class of objects to be categorized,

◼ each tree node may have but need not to have a set of attributes,

AutomationML and
 ECLASS integration

41

◼ each sub node of a node represents a more detailed class of objects to be categorized,

◼ each sub node may have but need not to have additional attributes, and

◼ each leave node of the tree has at least one attribute.

Currently, the only available, vendor-independent classification standard for devices exploitable
in factory automation is ECLASS.

The translation of polymorphisms and cardinalities from ECLASS into an AutomationML role
class is currently not possible. For this reason, only the classification classes are initially used
in AutomationML.

Following these assumptions, the following algorithm shall be applied to create the role class
library for a given catalogue.

Step 1. Create a new RoleClassLibrary with
a. a unique name following the AutomationML rules (e.g., “eClassRoleClassLib”),
b. a unique version number following the AutomationML rules, and
c. a meaningful description following the AutomationML rules.

Step 2. Select one node of the catalogue class tree of which all super nodes have been

modeled as roles.

Step 3. For the selected node do:
a. If the selected node is not an application class, create a new role class as and with

i. a unique name following the AutomationML rules,
ii. a RefBaseClassPath to

1. the role class defined for the direct super node of the considered
node or

2. the role eClassClassSpecification defined in Section 6.1.1 if there is
no supernode).

b. Complete the attributes “Standard”, “ClassificationClass” and “IRDI” as defined in
Section 6.1.1

Repeat the steps 2 and 3 for all items of your catalogue except application classes that should
be part of your AutomationML RoleClassLibrary.

Note 1: It is recommended to rebuild the node hierarchy of the catalogue as a role class hierarchy.

Note 2: It is recommended to use the names of catalogue classes and its attributes as names of the role classes and
their attributes.

Figure 24 depicts an example for a simple AutomationML role class library that is implemented
according to the described algorithm.

AutomationML and
 ECLASS integration

42

Figure 24 – Example Role Class

Within this example, each role class that represents an ECLASS classification class has 3 attributes as
mentioned in 6.1.1. Figure 25 shows the attributes for a role class.

Figure 25 – Attributes within an Example Role Class

Figure 23 depicts the XML view of the example. For better understanding it does not include all
attribute definitions and the descriptions for the attributes.

<RoleClassLib Name="eClassRoleClassLib">
 <Version>1</Version>
 <RoleClass Name="eClassClassSpecification" RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole">
 <Version />
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value />
 </Attribute>
 <RoleClass Name="27-00-00-00 Electric engineering, automation, process control engineering"
RefBaseClassPath="eClassRoleClassLib/eClassClassSpecification">

AutomationML and
 ECLASS integration

43

 <Version />
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value />
 </Attribute>
 <RoleClass Name="27-04-00-00 Power supply devices" RefBaseClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00
Electric engineering, automation, process control engineering">
 <Version />
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value>1.0<Value />
 </Attribute>
 <RoleClass Name="27-04-07-00 Power supply device" RefBaseClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-
00 Electric engineering, automation, process control engineering/27-04-00-00 Power supply devices">
 <Version />
 <RoleClass Name="27-04-07-01 Continuous current supply"
RefBaseClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation, process control engineering/27-04-00-00 Power
supply devices/27-04-07-00 Power supply device">
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27040701</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value>IRDI://0173-1#01-AFX040#006</Value>
 </Attribute>
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value>1.0</Value>
 </Attribute>
 </RoleClass>
 </RoleClass>
 </RoleClass>
 <RoleClass Name="27-14-00-00 Electrical installation, device" RefBaseClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-
00 Electric engineering, automation, process control engineering/27-04-00-00 Power supply devices/27-04-07-00 Power supply device">
 <Version />
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value />
 </Attribute>
 <RoleClass Name="27-14-11-00 Terminal (not overhead line)" RefBaseClassPath="eClassRoleClassLib/eClassClassSpecification/27-
00-00-00 Electric engineering, automation, process control engineering/27-04-00-00 Power supply devices/27-04-07-00 Power supply device">
 <Version />
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value />
 </Attribute>
 <RoleClass Name="27-14-11-20 Feed-through terminal block"
RefBaseClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation, process control engineering/27-04-00-00 Power
supply devices/27-04-07-00 Power supply device">
 <Version />
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141120</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value>IRDI://0173-1#01-AFZ769#021</Value>
 </Attribute>
 </RoleClass>
 <RoleClass Name="27-14-11-35 End bracket for terminal block"
RefBaseClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation, process control engineering/27-04-00-00 Power
supply devices/27-04-07-00 Power supply device">
 <Version />
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141135</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value>IRDI://0173-1#01-AKE263#017</Value>
 </Attribute>
 </RoleClass>
 </RoleClass>
 </RoleClass>
 </RoleClass>
 </RoleClass>
</RoleClassLib>

Figure 26 – Example Role Class XML View

Note: To apply the generation process of an AutomationML RoleClassLibrary that represents the ECLASS Dictionary
or parts of it, it is necessary to have the legal rights to use the ECLASS Dictionary. For further information please
contact the ECLASS e.V. Head Office via info@eclass.de.

6.1.3 Role class library application process

Second, after generating the role class library, the role classes have to be used within the
semantic referencing process.

In order to assign a semantic definition to an AutomationML object with the help of the role
class eClassClassSpecification, the CAEX elements “SupportedRoleClass” and
“RoleRequiements” shall be used according to the AutomationML specification, see Figure 27.

AutomationML and
 ECLASS integration

44

Figure 27 – Applicable means for semantic reference for AutomationML Object

Note: When creating a SystemUnitClass, it is recommended to use the attributes as for eClassClassSpecification
(see 6.1.1) and to take over from the specific role class. This allows an exchange even without RoleClassLibrary.

6.1.4 ECLASS Example

Figure 28 and Figure 29 depict an example for the use of the semantic reference for
AutomationML objects. Within this example, the AutomationML object is defined as a DC motor
with the AutomationML Object name “InstanceMyMotor” for a concrete instance of a motor and
“PlaceholderClassificationMotor” for an unspecific object with a role requirement (RR)

Figure 28 – Example motor AutomationML object with semantic reference
 for an instance and an Internal Element with a role requirement

Attributes

InternalElement

RefBaseSystemUnit
Path

SupportedRoleClass

RoleRequirements

……
…

……
…

…

Attribute

RefSemantic

……
…

AutomationML and
 ECLASS integration

45

Figure 29 – Attributes to the example motor AutomationML object with semantic
reference for a) an instance and b) an Internal Element with a role requirement

Figure 30 depicts the XML view of example a), which includes the object “Instanc eMyMotor”.

<InternalElement Name="InstanceMyMotor" RefBaseSystemUnitPath="SystemUnitClassLib1/DC engine" ID="9e64d613-3b95-4af5-b826-072a7732b9a0">
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Description>Specifies the version of the ECLASS catalogue, which the ECLASS category is related to</Description>
 <Value>ECLASS-9.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Description>Specifies the ECLASS Classification Class for the AutomationML object coded as 8-digit integer with two digits for each hierarchical
level of the class structure.
 </Description>
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Description>Specifies the IRDI for the classification class</Description>
 <Value>0173-1#01-AKE162#011</Value>
 </Attribute>
 <Attribute Name="Construction form of DC motor" AttributeDataType="xs:string">
 <Description>Arrangement of machine parts in reference to anchorage, arrangement of bearings and shafts</Description>
 <RefSemantic CorrespondingAttributePath="IRDI-Path://0173-1---BASIC_1_1%2301-ABW077%23009/0173-1%2302-BAE069%23007" />
 </Attribute>
 <Attribute Name="Construction size DC-Motor" AttributeDataType="xs:string">
 <Description>Housing size of a DC motor, from which the attachment and anchorage dimensions are derived</Description>
 <RefSemantic CorrespondingAttributePath="IRDI-Path://0173-1---BASIC_1_1%2301-ABW077%23009/0173-1%2302-BAE072%23005" />
 </Attribute>
 <Attribute Name="Cooling type" AttributeDataType="xs:string">
 <Description>Summary of various types of cooling, for use as search criteria that limit a selection</Description>
 <RefSemantic CorrespondingAttributePath="IRDI-Path://0173-1---BASIC_1_1%2301-ABW077%23009/0173-1%2302-BAE122%23006" />
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="RoleClassLib1/27-03-25-01 DC engine (IEC)" />
</InternalElement>

Figure 30 – XML View of the example motor AutomationML object with semantic
reference (AC)

Note: The last three attributes in this example already contain attributes semantic. An explanation takes place in
the next chapter.

AutomationML and
 ECLASS integration

46

6.2 Integration of attribute semantics

In addition to the object semantic via a role model described in the chapter above, also the
unique semantic of attributes is necessary. The AutomationML top level format CAEX includes
a concept to reference a semantic definition for attributes. This concept shall be used to define
the semantics of AutomationML attributes by using ECLASS properties. In 6.2.1 a concept for
the ECLASS IRDI as well as the IRDI-Path is described. Additionally, in 6.2.2 best practices for
the ECLASS Property to Automation attribute transformation are presented. The chapter ends
with an example demonstrating the definded concepts in 6.2.3.

6.2.1 Attribute semantics via IRDI

For the definitions of attribute semantics via IRDI, the following provisions apply:

◼ The CAEX schema element “RefSemantic” shall be used for the semantic definition for a single
attribute, see Figure 31.

◼ The IRDI shall be used as defined within the ECLASS Standard specification.

Note: No part (e.g., the version part) of an IRDI may be cut off. Only the full IRDI is unique.

The IRDI is following the ISO 29002. However, the context of a property is not considered in ISO 29002.
Therefore, the IRDI-Path concept was developed by ECLASS. Especially regarding ECLASS Advanced,
the context of a property is important. Therefore, the concept of the IRDI-Path is used. The IRDI-Path
specifies the path through the structure starting at the Application class to the position of the
corresponding property as well as the property itself. It is the path in the ECLASS structure. The path
follows the rules of the URI according to RFC 3986. Thus, also the following provisions apply:

◼ The value of the XML attribute “CorrespondingAttributePath” of the CAEX schema element
“RefSemantic” element shall be assembled as the following string as IRDI-Path:

o For SystemUnitClasses and InternalElements: “IRDI-PATH://” + IRDI of the Application
Class + [IRDIs of the parent ECLASS properties] + IRDI of the ECLASS property.

▪ The IRDIs are separated by “/”. “/” is used as official separator for structuring
according to RFC 3986.

▪ Since “#” is a functional character in a URI, the URI encoding of ECLASS IRDIs
must be done via replacing each “#” by “%23”.

▪ The IRDI-Path contains IRDIs of reference properties, but not the IRDIs of
blocks.

▪ For example:
IRDI-PATH://0173-1---ADVANCED_1_1%2301-ADN862%23009
/0173-1%2302-AAR080%23009
/0173-1%2302-AAQ640%23009
/0173-1%2301-AAN520%23003

A corresponding illustration of this path can be found in Figure 32.

Note: The line breaks in the IRDI-Path are only for a better readability in this document.

Note: For ECLASS Basic the IRDI-Path also applies. However, the path is only the Basic Application Class IRDI
followed by a Property IRDI.

Note: Applications classes are a structural element in the ECLASS Standard. However, the applications classes are
not considered in the CSV derivation. Therefore, the ECLASS-JSON or ECLASS-XML derivation serves as a technical
basis at the current time.

o For attributes which exists several times in a SystemUnitClass (cardinalities), an asterik
and a numeration is added to distinguish the attributes

▪ For example:
IRDI-PATH://0173-1---ADVANCED_1_1%2301-ADN862%23009
/0173-1%2302-AAR080%23009
/0173-1%2302-AAQ640%23009
/0173-1%2301-AAQ666%23007*2
/0173-1%2302-AAN239%23002

A corresponding illustration of this path can be found in Figure 33.

o For the concept or polymorphism no specific rule in path is necessary (see 6.3.3)

AutomationML and
 ECLASS integration

47

o For the link between Application class and aspects no reference property is used. In
this case the IRDI-Path has the following syntax: “IRDI-PATH://” + IRDI of the
Application Class + IRDI of the Aspect + [IRDIs of the parent ECLASS properties] +
IRDI of the ECLASS property

▪ For example:
IRDI-PATH://0173-1---ADVANCED_1_1%2301-ADN862%23009
/0173-1%2301-ADN228%23009
/0173-1%2302-AAQ376%23008
/0173-1%2302-AAO735%23003

o Specific suffixes (e.g. ".MIN") at the end of the path are possible in exceptional cases
where there are several values at one characteristic (see 6.3.4)

◼ If the AutomationML Unit attribute is not provided, the measurement unit is defined by the referenced
ECLASS property.

◼ If the AutomationML Unit attribute is provided, it shall be selected from the ECLASS measurement
unit table.

◼ If the AutomationML AttributeDataType attribute is not provided, the data type is defined by the
referenced ECLASS property.

If the AutomationML AttributeDataType attribute is provided, it shall be converted according to Table 5.

Figure 31 – Applicable means for semantic reference for a single attribute

Figure 32 – IRDI-Path example of a nested property

Attributes

InternalElement

RefBaseSystemUnit
Path

SupportedRoleClass

RoleRequirements

……
…

……
…

…

Attribute

RefSemantic

…

0173-1#02-AAN520#003

0173-1---ADVANCED_1_1#01-ADN862#009

0173-1#02-AAQ640#009

0173-1#02-AAR080#009

AutomationML and
 ECLASS integration

48

Figure 33 – IRDI-Path example of a nested property in cardinality

Note: The defined IRDI-Path concept from ECLASS would also work for IEC IRDIs if the “/” in the CDD IRDIS would
be replaced by “%2F”. Then “/” would work as separator between the IRDIs and the strings in between form one IRDI,
which then would have to be URI coded, as it is done with “#” for ECLASS IRDIs.

E.g. 0112/2///61360_4#AAA075#001/0112/2///61360_4#AAE519#001 would become

0112%2F2%2F%2F%2F61360_4%23AAA075%23001/0112%2F2%2F%2F%2F61360_4%23AAE519%23001

However, this is only a remark from ECLASS how the IRDI-Path concept could be applied to CDD also. This concept
is not stardardized yet.

6.2.2 Attribute transformation best practice

In ECLASS a Property consists of the elements preferred name, definition, value, unit and data
type. The same elements are used in AML with the following notations: “Name”, “Description”,
“Value”, “Unit” and “DataType”.

In the following Table 4 the terms are accordingly contrasted and the XML formats were added.

Table 4 – Translation of the attributes of ECLASS to AML

ECLASS
description

AutomationML
description

XML Example AutomationML

ECLASS property AutomationML
Attribute

<Attribute>
…
</Attribute>

Preferred name Name
<Attribute Name="min. input voltage (at DC)">
…
</Attribute>

Definition Description

<Attribute >
 <Description>greatest possible value of DC voltage, that can be
applied at the input of a working fund
 </Description>
</Attribute>

Value Value
<Attribute>
 <Value>18</Value>
</Attribute>

Unit Unit
<Attribute Unit="V">
…
</Attribute>

DataType DataType
<Attribute AttributeDataType="xs:float">
…
</Attribute>

Evaluated with “2”

0173-1---ADVANCED_1_1#01-ADN862#009

0173-1#02-AAQ640#009

0173-1#02-AAR080#009

0173-1#02-AAN239#002

0173-1#02-AAQ666#007

AutomationML and
 ECLASS integration

49

IRDI RefSemantic

<Attribute>
 <RefSemantic CorrespondingAttributePath=

" IRDI-PATH://0173-1---ADVANCED_1_1%2301-
ADO414%23009/0173-1%2302-BAF016%23006”>

 </RefSemantic>
</Attribute>

Aside from the notations used by ECLASS the data formats (which are given in
http://wiki.eclass.eu/wiki/Property#Data_type_.28Property.29 for example) have to be
translated, too. In AutomationML there is always an “xs:” in front of the notation. For example
the data format “BOOLEAN” in ECLASS becomes “xs:boolean” in AML .

In Table 5 the respective translations are listed. As AutomationML has to rely on the data types
defined in XML specifications the semantical richness of data types in ECLASS is not available
in AutomationML. The original ECLASS data types have to be identified out of AutomationML
files by use of the IRDI given in the SemanticRef information of the attribute.

In the following table additional examples for the data format represented in ECLASS and
AutomationML are given.

Note: There may be changes in the data type mapping in the future.

Table 5 – Translation of the data types from ECLASS to AutomationML permitted data
types

ECLASS Example ECLASS AutomationML Example AutomationML

BOOLEAN Yes xs:boolean true

STRING
0173-1#01-ADG629#001 ;
DN 700 ; 10 Mbps

xs:string
0173-1#01-ADG629#001 ; DN
700 ; 10 Mbps

STRING_TRANSLATAB
LE

Red ; Green ; Aluminum xs:string Red ; Green ; Aluminum

INTEGER_COUNT 1 ; 10 ; 111 xs:integer 1 ; 10 ; 111

INTEGER_MEASURE 1 ; 10 ; 111 xs:integer 1 ; 10 ; 111

INTEGER_CURRENCY 1 ; 10 ; 111 xs:integer 1 ; 10 ; 111

REAL_COUNT 1,5 ; 102,35 xs:float 1,5 ; 102,35

REAL_MEASURE 1,5 ; 102,35 xs:float 1,5 ; 102,35

REAL_CURRENCY 1,5 ; 102,35 xs:float 1,5 ; 102,35

RATIONAL 1/3, 1 2/3 xs:float 0.333333333, 1.666666666

RATIONAL_MEASURE 1/3, 1 2/3 xs:float 0.333333333, 1.666666666

TIME 12:45 xs:time 12:45:00

TIMESTAMP 1979-01-15 12:45 xs:datetime 1979-01-15T12:45:00.0

DATE 1979-01-15 xs:date 1979-01-15

URL
http://www.automationml.or
g

xs:anyURI http://www.automationml.org

Level Type (only
Advanced)

Includes the minimal,
maximal, typical and
nominal value

min, max, typ, nom xs:string min, max, typ, nom

Axis Type (only
Advanced)

Is a placement type and
defines points in a
geometry schema
(axis1_placement_type,
axis2_placement_2d_ty
pe,
axis2_placement_3d_ty

axis1_placement_type,
axis2_placement_2d_type,
axis2_placement_3d_type

xs:string
axis1_placement_type,
axis2_placement_2d_type,
axis2_placement_3d_type

http://wiki.eclass.eu/wiki/Property#Data_type_.28Property.29

AutomationML and
 ECLASS integration

50

ECLASS Example ECLASS AutomationML Example AutomationML

pe), according to ISO
13584-42:2010,
referring to ISO 10303-
42

6.2.3 ECLASS Example

Figure 34 depicts an example for the use of the CAEX element “RefSemantic” to specify the
semantics of an AutomationML attribute. Within this example, one AutomationML object with
the name “AutomationMLObject” exists. This Object has the two AutomationML attributes
“length” and “width”. Each attribute is semantically defined by an IRDI according to the provision
above.

For the AutomationML attribute “length” the IRDI has the value “0173-1#02-BAA018#007” and
for the AutomationML attribute “width” the value of the corresponding IRDI is “ 0173-1#02-
BAC137#006”.

<InstanceHierarchy Name="ExampleIH">
 <Version>1.0.0</Version>
 <InternalElement Name="PT 2,5_instance_1"
RefBaseSystemUnitPath="SystemUnitClassLib1/PT 2,5" ID="882247ed-eba6-4d7a-a19d-
20a6c50d3d60">
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS 11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141120</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value>0173-1#01-AFZ769#020</Value>
 </Attribute>
 <Attribute Name="Length" AttributeDataType="xs:float">
 <Value>5.2</Value>
 <RefSemantic CorrespondingAttributePath="IRDI-Path://0173-1---
BASIC_1_1%2301-ABQ162#014/0173-1%2302-BAA018%23007" />
 </Attribute>
 <Attribute Name="Width" AttributeDataType="xs:float">
 <Value>48.6</Value>
 <RefSemantic CorrespondingAttributePath="IRDI-Path://0173-1---
BASIC_1_1%2301-ABQ162%23014/0173-1%2302-BAC137%23006" />
 </Attribute>
 <SupportedRoleClass
RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering,
automation, process control engineering/27-14-00-00 Electrical installation, device/27-14-11-00
Terminal (not overhead line)/27-14-11-20 Feed-through terminal block" />
 </InternalElement>
</InstanceHierarchy>

Figure 34 – Example RefSemantic for a single attribute

AutomationML and
 ECLASS integration

51

6.3 Product description based on ECLASS in AutomationML

To embed product description into AutomationML System Unit Classes rep resent a container
for such product description. As described in the chapters 6.1 the object semantic according to
ECLASS is realized by a role model through a RoleClassLibrary representing and the data
elements “supportedRoleClass” and “RoleRequirement” .

Therefore, first the role class library has to be created and secondly System Unit Classes have
to be created which as well get linked to the role classes as described in the semantic
referencing process from 6.1.

System Unit Classes which are based on ECLASS classification classes should also use the ECLASS
properties following the ECLASS structure. It is not necessary to use all ECLASS properties of the
related class, just those that are known for the System Unit Class or are necessary for the use case.
ECLASS properties will be modeled as attributes in AutomattionML, using the same names following
the AutomationML rules. To realize attribute semantic the chapter 6.2 defines a way to link attributes
with ECLASS properties.

An example for a System Unit Classes including a product description according to ECLASS Basic is
already shown in 6.2.3. In case of ECLASS Advanced, a property can have several parents (e.g.,
references properties, blocks or aspects). Figure 35 gives an example for such an attribute, which
represents a nested property (IRDI-PATH://0173-1---ADVANCED_1_1%2301-ADN862%23009/0173-
1%2301-ADN228%23009/0173-1%2302-AAQ373%23009/0173-1%2302-AAO677%23002) in the
ECLASS classifcation system:

Figure 35 – Attribute tree of a SystemUnit Class with IRDI-PATH

Furthermore, ECLASS includes more modelling features then just bundling and nesting of properties.
To support all ECLASS modeling possibilities, the following chapters provide a guide line on
how to deal with cardinalities, polymorphisms, or multiple values on an attribute.

6.3.1 Attributes of System Unit Classes as Internal Elements

It can be advantageous to use an attribute of a System Unit Class like an Internal Element because
Internal Elements can be connected via interfaces and can have child elements. For this reason, it is
allowed to remove an attribute from the attribute tree of a System Unit Class and to represent this
attribute as an Internal Element of the System Unit Class (Figure 36 and Figure 37). The attribute itself
and all child attributes are then attributes of the new Internal Element. As mentioned above, the
RefSemantic CorrespondingAttributePath of each attribute shall contain the complete IRDI-Path
beginning with the Application class.

AutomationML and
 ECLASS integration

52

Figure 36 – The attribute connection is a sub attribute of CAx connector and function

Figure 37 – The attribute “Connection” as IE of the SUC "PT 2,5 Quattro"

As shown in Figure 37, it is recommended to add the AutomationML attribute “Frame” to the new Internal
Element to describe its relative position to the parent System Unit Class.

6.3.2 Cardinality

ECLASS has a cardinality property, allowing dynamic multiplication of a referenced block. In
AutomationML System Unit Classes, the repeated property block can be represented as attributes. The
repeated cardinality attributes in the system unit class cannot have the same name; the names of
attributes must be unique. Therefore, these attributes are numbered consecutively. The AutomationML
attributes consists then of the ECLASS property name, followed by an asterik, followed by the number
(Figure 38). Also, the IRDI-PATH in the RefSemantic CorrespondingAttributePath gets the same
numbering scheme (Figure 37). If the attributes are used as Internal Elements (also Figure 37), the
names of the Internal Elements must be numbered as described for attributes, because these names
also have to be unique.

AutomationML and
 ECLASS integration

53

Figure 38 – Example System Unit Class with multiple attribute (cardinality)

In Figure 38 a System Unit Class (System Unit Class) implements the Role Class (Role Class). The
attribute ExampleProperty is used three times and therefore the attributes are numbered consecutively
with a leading colon.

6.3.3 Polymorphism

Polymorphism in ECLASS allows that a polymorphic property can be described by different property
blocks. An AutomationML System Unit Class is an implementation of an ECLASS class. Therefore, the
polymorphic ECLASS property of the System Unit Class is defined by the chosen option.

Figure 39 – Polymorphic ECLASS property (Type of connection)

AutomationML and
 ECLASS integration

54

Figure 40 – System Unit Class with resolved polymorphism (Type of connection)

6.3.4 Level Type

The Level Type is a data type of an ECLASS property and specifies the minimal (MIN, minimum of the
value), nominal (NOM, value as designated), typical (TYP, value as typical present) and maximal (MAX,
maximum of the value) value according EN 61360-1:2017. An example is the property “hole grid” (0173-
1#02-AAN450#001). This property is a level type property with minimum and maximum (see Figure 41).

Figure 41 – ECLASS Property with Level Type

A level type property is an AutomationML attribute with two or more sub-attributes holding the values
for the minimum and the maximum. Their RefSemantic CorrespondingAttributePath is extened by the
appendix “.MAX” or “.MIN”.

AutomationML and
 ECLASS integration

55

Example:

• IRDI-PATH://<IRDI Aplication Class>/…/0173-1%2302-AAN450%23001.MAX

• IRDI-PATH://<IRDI Aplication Class>/…/0173-1%2302-AAN450%23001.MIN

Figure 42 – Level Type Attribute

6.3.5 Properties with multiple values

Some ECLASS properties have multiple values (e.g., “Position (in mm)”, Axis 1D, 0173-1#02-
AAM650#002). In such cases the values are modeld in AutomationML as sub-attributes of the attribute
representing the ECLASS property. For simplicity, the names of the sub-attributes correspond to the
values (see Figure 43). The sub-attributes do not have an IRDI-Path in their RefSemantic, because the
semantic is already given by the parent attribute (here “Position (in mm)”).

AutomationML and
 ECLASS integration

56

Figure 43 – Attribute with multiple values

6.3.6 ECLASS Example

Figure 24 and Figure 26 represent the role class library generated by using the ECLASS
classification catalogue Version 11.0. It contains relevant parts of the classification catalogue
including the classification classes for power supplies, feed-through terminal blocks and end
brackets.

Based on the defined role class library, a device catalogue can be created cover ing the
necessary devices for the example. Figure 44 depicts a system unit class library containing a
system unit “QUINT” class for a power supply derived from the role class “27-04-07-01
Continuous current supply”, a system unit class “CLIPFIX 35 -5” derived from the role class “27-
14-11-20 Feed-through terminal block” and a system unit class “PT 2,5-QUATTRO” derived
from the role class “27-14-11-35 End bracket for terminal block”.

Figure 44 represent the ECLASS related attributes for the system unit class ”Quint”.

AutomationML and
 ECLASS integration

57

Figure 44 – Example of system unit class library including the attributes for the SUCs

In Figure 45, the XML representation of the example system unit class library can be found. Within this
example the attributes of the SUC are not mentioned for better readability.

<SystemUnitClassLib Name="Phoenix Contact">
 <Version>0.1 dev</Version>
 <SystemUnitClass Name="QUINT-PS/1AC/24DC/ 5">
 <Version />
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27040701</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value>IRDI://0173-1#01-AFX040#005</Value>
 </Attribute>
 <Attribute Name="degree of protection" AttributeDataType="xs:string" Unit="">
 <Value>IP20</Value>
 <RefSemantic CorrespondingAttributePath="IRDI-PATH://0173-1---BASIC_1_1%2301-AFR738%23005/0173-1%2302-BAG975%23013" />
 </Attribute>
 <Attribute Name="width" AttributeDataType="xs:float" Unit="mm">
 <Value>40</Value>
 <RefSemantic CorrespondingAttributePath="IRDI-PATH://0173-1---BASIC_1_1%2301-AFR738%23005/0173-1%2302-BAF016%23006" />
 </Attribute>
 <Attribute Name="height" AttributeDataType="xs:float" Unit="mm">
 <Value>130</Value>
 <RefSemantic CorrespondingAttributePath="IIRDI-PATH://0173-1---BASIC_1_1%2301-AFR738%23005/0173-1%2302-BAA020%23009" />
 </Attribute>
 <Attribute Name="depth" AttributeDataType="xs:string" Unit="mm">
 <Value>125</Value>
 <RefSemantic CorrespondingAttributePath="IRDI-PATH://0173-1---BASIC_1_1%2301-AFR738%23005/0173-1%2302-BAB577%23008" />
 </Attribute>
 <Attribute Name="Supply voltage type" AttributeDataType="xs:string" Unit="">
 <Value>AC/DC</Value>
 <RefSemantic CorrespondingAttributePath="IRDI-PATH://0173-1---BASIC_1_1%2301-AFR738%23005/0173-1%2302-BAC078%23007" />
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation, process
control engineering/27-04-00-00 Power supply devices/27-04-07-00 Power supply device/27-04-07-01 Continuous current supply" />
 </SystemUnitClass>
 <SystemUnitClass Name="CLIPFIX 35-5">
 <Version />
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141135</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value> IRDI://0173-1#01-AKE263#017</Value>
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation, process
control engineering/27-14-00-00 Electrical installation, device/27-14-11-00 Terminal (not overhead line)/27-14-11-35 End bracket for terminal block" />
 </SystemUnitClass>
 <SystemUnitClass Name="PT 2,5-QUATTRO">
 <Version />
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141120</Value>

http://dict.leo.org/ende/index_en.html#/search=readability&searchLoc=0&resultOrder=basic&multiwordShowSingle=on

AutomationML and
 ECLASS integration

58

 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value>IRDI://0173-1#01-AFZ769#021</Value>
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation, process
control engineering/27-14-00-00 Electrical installation, device/27-14-11-00 Terminal (not overhead line)/27-14-11-20 Feed-through terminal block" />
 </SystemUnitClass>
</SystemUnitClassLib>

Figure 45 – XML representation of example of system unit class library

Using the defined role class library and the defined system unit class library the instance
hierarchy covering the engineering data to be exchanged can be modelled. Figure 46
represents the instance hierarchy of the example system containing one DIN rail as role
requirement which contains several end brackets, a power supply and a feed through terminal
block It becomes evident that the internal element “A Din Rail” has the role requirement “27-40-
06-02 DIN rail”

Figure 46 – Example of instance hierarchy

Figure 47 depicts the same IH in XML representation.

AutomationML and
 ECLASS integration

59

<InstanceHierarchy Name="AMLEclassExample">
 <Version>1.0.0</Version>
 <InternalElement Name="A Din Rail" ID="c7fd3ae1-c342-4b63-bcaf-af5bfa3ec245">
 <InternalElement Name="CLIPFIX 35-5_instance_1" RefBaseSystemUnitPath="Phoenix Contact/CLIPFIX 35-5" ID="dcd77964-b0bc-4822-9b9a-
bd6cdd2872bf">
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141135</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value> IRDI://0173-1#01-AKE263#017</Value>
 </Attribute>
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value />
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation,
process control engineering/27-14-00-00 Electrical installation, device/27-14-11-00 Terminal (not overhead line)/27-14-11-35 End bracket for terminal block" />
 </InternalElement>
 <InternalElement Name="PT 2,5-QUATTRO_instance_1" RefBaseSystemUnitPath="Phoenix Contact/PT 2,5-QUATTRO" ID="5727c748-b083-4939-
991d-423ccffd408a">
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141120</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value>IRDI://0173-1#01-AFZ769#021</Value>
 </Attribute>
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value />
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation,
process control engineering/27-14-00-00 Electrical installation, device/27-14-11-00 Terminal (not overhead line)/27-14-11-20 Feed-through terminal block" />
 </InternalElement>
 <InternalElement Name="CLIPFIX 35-5_instance_2" RefBaseSystemUnitPath="Phoenix Contact/CLIPFIX 35-5" ID="dbabeed1-4e7a-40e3-a058-
64ed7fd98c7b">
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141135</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value> IRDI://0173-1#01-AKE263#017</Value>
 </Attribute>
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value />
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation,
process control engineering/27-14-00-00 Electrical installation, device/27-14-11-00 Terminal (not overhead line)/27-14-11-35 End bracket for terminal block" />
 </InternalElement>
 <InternalElement Name="QUINT-PS/1AC/24DC/ 5_instance_1" RefBaseSystemUnitPath="Phoenix Contact/[QUINT-PS/1AC/24DC/ 5]"
ID="6f7abbfe-b299-4347-8c35-d18be417c5bb">
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27040701</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value>IRDI://0173-1#01-AFX040#005</Value>
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation,
process control engineering/27-04-00-00 Power supply devices/27-04-07-00 Power supply device/27-04-07-01 Continuous current supply" />
 </InternalElement>
 <InternalElement Name="CLIPFIX 35-5_instance_3" RefBaseSystemUnitPath="Phoenix Contact/CLIPFIX 35-5" ID="1eb34c9e-f668-4603-a247-
244b404b69df">
 <Attribute Name="Standard" AttributeDataType="xs:string">
 <Value>ECLASS-11.0</Value>
 </Attribute>
 <Attribute Name="ClassificationClass" AttributeDataType="xs:string">
 <Value>27141135</Value>
 </Attribute>
 <Attribute Name="IRDI" AttributeDataType="xs:string">
 <Value> IRDI://0173-1#01-AKE263#017</Value>
 </Attribute>
 <Attribute Name="Version" AttributeDataType="xs:string">
 <Value />
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation,
process control engineering/27-14-00-00 Electrical installation, device/27-14-11-00 Terminal (not overhead line)/27-14-11-35 End bracket for terminal block" />
 </InternalElement>
 <RoleRequirements RefBaseRoleClassPath="eClassRoleClassLib/eClassClassSpecification/27-00-00-00 Electric engineering, automation, process
control engineering/27-40-00-00 Electrical insulation and connecting material/27-40-06-00 Energy distribution system/27-40-06-02 DIN rail" />
 </InternalElement>
</InstanceHierarchy>

Figure 47 – XML representation of the example instance hierarchy

AutomationML and
 ECLASS integration

60

Literature

[1] AutomationML e.V.: AutomationML Whitepaper Part 1 - Architecture and general
requirements, https://www.automationml.org/o.red/uploads/dateien/1375858464-
AutomationML Whitepaper Part 1 - AutomationML Architecture V2.2.pdf, (last access August
2014).

[2] AutomationML e.V.: AutomationML Whitepaper Part 2 - Role class libraries,
https://www.automationml.org/o.red/uploads/dateien/1375858483-AutomationML Whitepaper
Part 2 - AutomationML Libraries_v2.2.pdf.pdf, (last access August 2014).

[3] AutomationML e.V.: AutomationML Whitepaper Part 3 - Geometry and Kinematics,
https://www.automationml.org/o.red/uploads/dateien/1378299113-AutomationML Whitepaper
Part 3 AutomationML GeometryV2.2.pdf, (last access August 2014).

[4] AutomationML e.V.: AutomationML Whitepaper Part 4 - Logic Description,
https://www.automationml.org/o.red/uploads/dateien/1375858589-AutomationML Whitepaper
Part 4 - AutomationML Logic Description v2.pdf, (last access August 2014).

[5] J. Prinz: Formalization of object constraints in AutomationML, 3d AutomationML user
conference, October 7th. 2014,
https://www.automationml.org/o.red/uploads/dateien/1417687897-
AutomationML_ConferenceProceedings_2014.zip.

